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Boundary conditions for asymmetric wall heat fluxes in double-pass parallel-plate laminar countercur-
rent operations are analyzed theoretically in this work by using an eigenfunction expansion in terms
of power series for the homogeneous part and an asymptotic solution for the non-homogeneous part.
Effects of variable ratio of heat fluxes on both sides and impermeable-sheet location are also studied.
Quantitative and qualitative interpretations of theoretical predictions are utilized to investigate of
heat-transfer efficiency enhancement of the double-pass model under consideration as compared to
those in the single-pass operations without an impermeable sheet inserted. Results are presented in
terms of Nusselt number and device performance improvement. The influence of the impermeable-sheet
location on the heat-transfer efficiency enhancement as well as on the power consumption increment in
double-pass operations has also been delineated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the problem of forced convection in a channel
between two parallel-plate walls has received considerable atten-
tion due to its relevance in connection with cooling of electronic
microchannels, heat pipes, nuclear reactors and drying technology.
Two different boundary conditions for the thermal response, say
constant wall temperature (Dirichlet problem) and constant heat
flux (Neumann problem), were presented in a wide variety of heat
transfer in engineering applications. The system at steady state
with laminar forced convection flow of the negligible axial conduc-
tion in cylindrical and parallel-plate geometries is known as the
classical Graetz problem [1–2]. Moreover, the more complicated
cases of convective heat-transfer problems with non-uniform heat-
ing are also investigated by many researchers, such as asymmetric
heating [3–5], and periodic heating [6,7].

The surface resistant along the flow path, as expressed in the wall
Nusselt number, could be a straightforward manner to analyze the
heat-transfer efficiency of multistream or multiphase problems
coupling mutual conditions at the interface. The extension of sin-
gle-stream problems to multistream or multiphase systems, as in
conjugated Graetz problems, has been examined by Papoutsakis
and Ramkrishna [8,9], Bernier and Baliga [10], Amin and Khan [11]
and Yin and Bau [12]. The analytical solution of conjugated Graetz
problems is obtained successfully by solving the Sturm–Liouville
systems and consequently the solution expressed in the form of
ll rights reserved.

: +886 2 26209887.
the infinite series consisting of the eigenvalue associated with each
eigenfunction [13–16], and came out with an infinite number of
eigenvalues and only the first negative eigenvalue was used for rapid
convergence in the present paper. The alternative configuration with
the recycle-effect concept leads to improve the heat-transfer effi-
ciency enhancement due to increasing the fluid velocity but the
heat-transfer area as well as the aspect ratio kept unchanged, and ap-
plies to many separation processes [17,18] and chemical reactors
[19,20].

The present study is an extension of our previous work [21] to
apply the case of the asymmetry heating for the conjugated Graetz
problem of which the heat fluxes at the walls depending on the ra-
tio of constant heat fluxes q001 and q002 along each of the walls. The
purposes of the present study are to investigate the improvement
of device performance, to obtain the wall temperature distribution
in the axial direction under variable wall heat fluxes based the
superposition technique, and then to discuss the influence of the
impermeable-sheet location on the heat-transfer efficiency
enhancement with the Graetz number as a parameter as well as
on the power consumption increment is also discussed.
2. Temperature distributions in a double-pass heat exchanger

A double-pass heat exchanger is designed by inserting an
impermeable sheet into a parallel-plate conduit as shown in
Fig. 1. The length and width of the heat exchanger are L and B,
respectively. The heights of two subchannels a and b are Wa and
Wb, respectively, while the total heat exchanger height is W. Com-
paring to the device height W, the impermeable sheet thickness d
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Nomenclature

a1 constant defined by Eq. (12)
a2 integration constants in Eq. (12)
a3 integration constants in Eq. (12)
B conduit width, m
b1 constant defined by Eq. (13)
b2 integration constants in Eq. (13)
b3 integration constants in Eq. (13)
De equivalent diameter of the conduit, m
dmn coefficient in the eigenfunction Fa,m

emn coefficient in the eigenfunction Fb,m

Fm eigenfunction associated with eigenvalue km

f friction factor
Gm function defined during the use of orthogonal expansion

method
Gz Graetz Number, VW/aBL
h average heat-transfer coefficient kW/m K
Ih heat-transfer enhancement, defined by Eq. (43)
Ip power consumption increment of, defined by Eq. (44)
k thermal conductivity of the fluid, W/m K
L conduit length, m
‘wf friction loss in conduit, N m/kg
m numbers of eigenvalues
Nu average Nusselt number
n terms of power series
P power consumption, N m/s
Qr wall heat flux ratio, q001=ðq001 þ q002Þ
q001 heat flux on the down wall, J/m2s
q002 heat flux on the upper wall, J/m2s
Re Reynolds number
Sm expansion coefficient associated with eigenvalue km

T temperature, K
V fluid volume flow rate, m3/s
v velocity distribution of fluid, m/s
v average velocity of fluid, m/s
W conduit height, m
x transversal coordinate, m
z longitudinal coordinate, m

Greek symbols
a thermal diffusivity of fluid, m2/s
D impermeable sheet location, Wa/W
d impermeable sheet thickness, m
g transversal coordinate, x/W
h defined by Eqs. (4) and (5)
km eigenvalue
l fluid viscosity, kg/ms
n longitudinal coordinate, z/(LGz)
q fluid density, kg/m3

/ defined by Eqs. (4) and (5)
w dimensionless temperature, 2kðT � T iÞ=ðq001 þ q002ÞW
w dimensionless bulk temperature

Subscripts
a subchannel a
b subchannel b
F at the outlet
i at the inlet
L at the end of the channel
0 in a single-pass device
s at the wall surface

V
Ti

V
TF

L

Wb

Wa

2q ′′

1q ′′

Fig. 1. Double-pass parallel-plate heat exchanger.
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can be neglected, say d << W. The fluid with volumetric flow rate V
and temperature Ti firstly feeds into the subchannel a and then, the
fluid was pumped into subchannel b at the conduit end with the
aid of a convectional pump. The fluid was heated by the down
and upper walls with constant heat fluxes q001 and q002.

To simply the mathematical statement, the following assump-
tions are made: (1) the physical properties of fluid are constant;
(2) the fluid is fully-developed laminar flow in each channel; (3)
the entrance length and end effects are neglected; (4) the longitu-
dinal heat conduction is ignored comparing to the longitudinal
heat convection; (5) the fluid is well-mixed at the inlet and the
outlet of each subchannel; (6) the thermal resistance of inserting
impermeable sheet can be neglected. Based on these assumptions,
the energy balance equations and the velocity distributions of a
double-pass heat exchanger with asymmetry wall heat fluxes are
formulated and are the same as the previous work [21] except
the boundary conditions on the walls as follows:

@wað0; nÞ
@ga

¼ �2Q rD ð1Þ

@wbð0; nÞ
@gb

¼ �2ð1� QrÞð1� DÞ ð2Þ

The dimensionless groups in the Eqs. (1), (2) are

ga ¼
xa

Wa
; gb ¼

xb

Wb
; n ¼ z

LGz
; wa ¼

2kðTa � T iÞ
ðq001 þ q002ÞW

;

wb ¼
2kðTb � T iÞ
ðq001 þ q002ÞW

;

D ¼Wa

W
; Q r ¼

q001
q00 þ q00

; Gz ¼ VW
aBL

ð3Þ
1 2
According to our previous study [21], the inhomogeneous bound-
ary conditions (Eqs. (1) and (2)) can be removed by the lin-
ear superposition of an asymptotic solution, h(g,n), and a
homogeneous solution, u(g,n), and the complete solutions are as
follows:

waðga; nÞ ¼ haðga; nÞ þ /aðga; nÞ ð4Þ
wbðgb; nÞ ¼ hbðgb; nÞ þ /bðgb; nÞ ð5Þ
2.1. Asymptotic solution of inhomogeneous boundary conditions

Substituting Eqs. (4) and (5) into energy balance equations, the
governing equations with inhomogeneous boundary conditions
can be written as
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@2haðga; nÞ
@g2

a
¼ ð6ga � 6g2

aÞ
ðDWÞ2

aLGz

" #
@haðga; nÞ

@n
ð6Þ

@2hbðgb; nÞ
@g2

b

¼ ð6ga � 6g2
aÞ
ð1� DÞ2W2

aLGz

" #
@hbðgb; nÞ

@n
ð7Þ

@hað0; nÞ
@ga

¼ �2Q rD ð8Þ

@hbð0; nÞ
@gb

¼ �2ð1� Q rÞð1� DÞ ð9Þ

hað1; nÞ ¼ hbð1; nÞ ð10Þ
@hað1; nÞ
@ga

¼ � D
1� D

@hbð1; nÞ
@gb

ð11Þ

As reported in the previous study [3,21], while the fluid temperature
profile reaches the thermal fully-developed under the constant heat
fluxes on the walls, the fluid temperature profile is unchanged in
the radial direction and increased linear in n. Therefore, the asymp-
totic solutions of ha(ga,n) and hb(gb,n) can be taken as following forms

haðga; nÞ ¼ a1nþ a1D g3
a �

1
2
g4

a

� �
þ a2ga þ a3 ð12Þ

hbðgb; nÞ ¼ b1
1

Gz
� n

� �
þ b1ð1� DÞ g3

b �
1
2
g4

b

� �
þ b2gb þ b3 ð13Þ

in which a1 and b1 are the undetermined constants and a2, a3, b2 and
b3 are the integration constants. Substituting Eqs. (12) and (13) into
the boundary conditions Eqs. (8) and (9) gives
a2 ¼ �2QrD ð14Þ
b2 ¼ �2ð1� Q rÞð1� DÞ ð15Þ
2.2. Eigenfunction expansions of the homogeneous problem

The homogeneous problem for the functions ua(ga,n) and ub(gb,n)
is the same as that reported in previous work [21]. Hence, the analyt-
ical solutions of the homogeneous problem are in the form

/aðga; nÞ ¼
X1
m¼0

Sa;mFa;mðgaÞGmðnÞ ð16Þ

/bðgb; nÞ ¼
X1
m¼0

Sb;mFb;mðgbÞGmðnÞ ð17Þ

where

GmðnÞ ¼ e�km
1

Gz�nð Þ ð18Þ

Fa;mðgÞ ¼
X1
n¼0

dmngn; dm0 ¼ 1ðselectedÞ; dm1 ¼ 0 ð19Þ

Fb;mðgÞ ¼
X1
n¼0

emngn; em0 ¼ 1ðselectedÞ; em1 ¼ 0 ð20Þ
2.3. Complete solution of a double-pass parallel-plate heat exchanger

To obtain the complete solution of a double-pass parallel-plate
heat exchanger with asymmetric wall heat fluxes, one should firstly
determine the six unknowns, say a1, a3 b1 and b3 for inhomogeneous
part and Sa,m and Sb,m in homogeneous part. These six unknowns can
be solved by using the boundary conditions and the orthogonality
conditions, average dimensionless inlet temperature, average
dimensionless outlet temperature, and the well-mixed temperature
at both subchannel ends, as follows. According to our previous work
[21], one can get the orthogonality conditions when n – m:

Wb

Z 1

0

W2
avaðgaÞ
aLGz

" #
Sa;mSa;nFa;mFa;ndga

þWa

Z 1

0

W2
bvbðgbÞ
aLGz

" #
Sb;mSb;nFb;mFb;ndgb ¼ 0 ð21Þ
When n = m, one can obtain

Wb

Z 1

0

W2
ava

aGzL
S2

a;mF2
a;mðgaÞe�

km
Gz dgaþWa

Z 1

0

W2
bvb

aGzL
S2

b;mF2
b;mðgbÞe�

km
Gz dgb

¼Wb

Z 1

0

W2
ava

aGzL
�a1D g3

a �
1
2
g4

a

� �
�a2ga�a3

� �
Sa;mFa;mðgaÞdga

þWa

Z 1

0

W2
bvb

aGzL
2

Gz
�b1ð1�DÞ g3

b�
1
2
g4

b

� �
�b2gb�b3

� �
�Sb;mFb;mðgbÞdgb ð22Þ

or

WbS2
a;me�

km
Gz Fa;mð1Þ

@F 0a;mð1Þ
@km

�Fa;mð0Þ
@F 0a;mð0Þ
@km

�F 0a;mð1Þ
@Fa;mð1Þ
@km

" #

þWaS2
b;me�

km
Gz Fb;mð1Þ

@F 0b;mð1Þ
@km

�Fb;mð0Þ
@F 0b;mð0Þ
@km

�F 0b;mð1Þ
@Fb;mð1Þ
@km

" #

¼Wb

Z 1

0

W2
ava

aGzL
�a1D g3

a �
1
2
g4

a

� �
�a2ga�a3

� �
Sa;mFa;mðgaÞdga

þWa

Z 1

0

W2
bvb

aGzL
2

Gz
�b1ð1�DÞ g3

b�
1
2
g4

b

� �
�b2gb�b3

� �
Sb;mFb;mðgbÞdgb

ð23Þ

The average dimensionless inlet temperature wa;i may be calcu-
lated at the inlet of subchannel a by

wa;i ¼
R 1

0 vaðgaÞBWawaðga;0Þdga

V

¼
Z 1

0
ð6ga � 6g2

aÞ a1D g3
a �

1
2
g4

a

� �
� 2QrDga þ a3

� �
dga

þ 1
D

X1
m¼0

e�
km
Gz Sa;m

km
fF 0a;mð1Þ � F 0a:mð0Þg ¼ 0 ð24Þ

The average dimensionless outlet temperature wF can be deter-
mined by

wF ¼�
R 1

0 vbðgbÞBWbwbðgb;0Þdgb

V

¼
Z 1

0
ð6gb�6g2

bÞ
b1

Gz
þb1ð1�DÞ g3

b�
1
2
g4

b

� �
�2ð1�Q rÞð1�DÞgbþb3

� �
dgb

� 1
1�D

� �X1
m¼0

e�
km
Gz Sb;m

km
fF 0b;mð1Þ�F 0b:mð0Þg¼

2
Gz

ð25Þ

Furthermore, due to the fluid is well-mixed at the inlet and outlet of
each channel, the two subchannel average temperatures at the ends
of conduit are the same, as shown in Eq. (26) or Eq. (27)

waL ¼ wbL ¼
Z 1

0

vaðgaÞWaB
V

wa ga;
1

Gz

� �
dga

¼ �
Z 1

0

vbðgbÞWbB
V

wb gb;
1

Gz

� �
dgb ð26Þ

or

Z 1

0
ð6ga�6g2

aÞ
a1

Gz
þa1D g3

a �
1
2
g4

a

� �
�2QrDgaþa3

� �
dga

þ 1
D

X1
m¼0

Sa;m

km
fF 0a;mð1Þ�F 0a;mð0Þg

¼
Z 1

0
ð6gb�6g2

bÞ b1ð1�DÞ g3
b�

1
2
g4

b

� �
�2ð1�Q rÞð1�DÞgbþb3

� �
dgb

� 1
1�D

X1
m¼0

Sb;m

km
fF 0b;mð1Þ�F 0b;mð0Þg ð27Þ

Once all the undetermined constants in Eqs. (12), (13) and coef-
ficients in (16), (17) are obtained, the dimensionless temperature
distributions of both subchannels are thus obtained in terms of
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the Graetz number (Gz), eigenvalues (km), expansion coefficients
(Sa,m and Sb,m), impermeable-sheet location (D) and associated
eigenfunctions (Fa,m(ga) and Fb,m(gb)).

3. Temperature distributions in a single-pass device

The single-pass device of the same working dimensions without
impermeable sheet inserting is shown in Fig. 2. The governing
equation and velocity distribution may be written as

@2w0ðg; nÞ
@g2 ¼ v0ðgÞW2

aGzL

" #
@w0ðg; nÞ

@n
ð28Þ

and

v0ðgÞ ¼
V

WB
ð6g� 6g2Þ ð29Þ

The boundary condition and initial conditions for solving Eq. (28) are

@w0ð0; nÞ
@g

¼ �2Q r ð30Þ

@w0ð1; nÞ
@g

¼ 2ð1� Q rÞ ð31Þ

w0ðg; 0Þ ¼ 0 ð32Þ

The calculation procedure is similar to that present in Section 2. The
complete solution of single-pass heat exchanger is

w0ðg; nÞ ¼ h0ðg; nÞ þ /0ðg; nÞ ð33Þ

where

h0 ¼ 2n� 2Qrgþ 2g3 � g4 þ Q r �
9

35
ð34Þ

/0ðg; nÞ ¼
X1
m¼0

S0;mF0;mðgÞG0;mðnÞ ð35Þ

The constants in Eq. (34) are solved by the boundary conditions and the
energy balance equation. The S0,m is determined by the initial condition
V
Ti

V
TF

L

W

2q ′′

1q ′′

Fig. 2. Single-pass parallel-plate heat exchanger.

Table 1
Convergence of power series in Eqs. (39) and (40) for n = 30 and 35 with D = 0.5 and Qr =

Gz n km Sa,m Sb,m

1 30 �2.18 2.20 � 10�16 2.45 � 10�1

35 �2.18 3.74 � 10�16 �5.38 � 10�1

10 30 �2.18 �4.55 � 10�16 �1.22 � 10�1

35 �2.18 �5.69 � 10�16 �1.08 � 10�1

100 30 �2.18 8.35 � 10�16 1.72 � 10�1

35 �2.18 �1.40 � 10�16 �2.50 � 10�1

1000 30 �2.18 �2.68 � 10�14 �5.57 � 10�1

35 �2.18 �2.00 � 10�14 �4.15 � 10�1
S0;m ¼

R 1
0

v0ðgÞW2

aGzL

� �
2Q rg� 2g3 þ g4 � Qr þ 9

35

� 	
F0;mðgÞdgR 1

0
v0ðgÞW2

aGzL

� �
e�

km
Gz ½F0;mðgÞ�2dg

ð36Þ
4. Heat-transfer efficiency enhancement

In force convection heat-transfer problem, Nusselt number usu-
ally uses to measure the convection heat transfer occurring at the
wall surface [22]. The average Nusselt number for double-pass
operation with a negligible thermal resistance sheet inserting is
defined as

Nu ¼ hW
k

ð37Þ

The average heat-transfer coefficient h is determined by making the
energy balance around the whole system

hð2BLÞ Ts �
T i þ TF

2

� �
¼ qCpVðTF � T iÞ ð38Þ

or

h ¼ qCpV
BL

TF � T i

½2ðTs � T iÞ � ðTF � T iÞ�
¼ qCpV

BL
wF

ð2ws � wFÞ
ð39Þ

where

Ts ¼
Tas þ Tbs

2
¼
R L

0 Tað0; zÞdzþ
R L

0 Tbð0; zÞdz
2

ð40Þ

Substituting Eq. (39) into Eq. (37) gives

Nu ¼ hW
k
¼ VW

aBL
wF

ð2ws � wFÞ
¼ Gz

Gzws � 1
ð41Þ

Similarly, for the single-pass operation, the definition of average
Nusselt number is

Nu0 ¼
Gz

Gzws;0 � 1
ð42Þ

The heat-transfer efficiency enhancement by employing a double-
pass device with a negligible thermal resistance sheet inserting is
defined by the percentage increase in heat transfer rate based on
that in a single-pass device

Ih ¼
Nu� Nu0

Nu0
¼ Gzws;0 � 1

Gzws � 1
� 1 ð43Þ

where the heat-transfer efficiency enhancement is calculated based
on the same working dimensions and operating parameters.

5. Power consumption increment

The power consumption of fluid flowing through a device may
be determined by friction losses caused by a joint, a diversion, a
0.7.

a1 a3 b1 b3 Nu

8 4.23 0.08 �2.23 0.08 0.36
8 4.23 0.08 �2.23 0.08 0.36
6 1.81 0.23 0.19 0.23 3.07
6 1.81 0.23 0.19 0.23 3.07
6 1.57 0.25 0.44 0.25 5.04
7 1.57 0.25 0.4 0.25 5.04
5 1.54 0.25 0.46 0.25 5.35
5 1.54 0.25 0.46 0.25 5.35
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Fig. 4. Dimensionless wall temperature distribution with D and Gz as parameters; Qr = 0.7.
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bending of a tube or the conduit wall. For simplicity to make com-
parison, only the wall friction loss is considered in calculating the
power consumption increment of double-pass operations in the
present study. The power consumption increment, Ip, of a dou-
ble-pass device is defined based on the power consumption in a
single-pass device as reported in previous work [21] as follows:

Ip ¼
P � P0

P0
¼ Vq½‘wf ;a þ ‘wf ;b� � Vq‘wf ;0

Vq‘wf ;0
¼ 1

D3 þ
1

ð1� D3Þ
� 1

ð44Þ
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Fig. 6. Initial point (nGz = 0), midpoint (nGz = 0.5) and endpoint (nGz = 1) wall
temperatures with D and Qr as parameters for Gz = 100, (a) bottom wall and (b)
upper wall.
6. Results and discussions

6.1. Temperature distribution in a double-pass device

The energy balances of a double-pass parallel-plate heat ex-
changer under asymmetric wall heat fluxes were solved with the
aid of the linear superposition of the asymptotic solutions, Eqs.
(12) and (13), and homogeneous solutions, Eqs. (16) and (17). As
referred to Table 1, the convergence of the power series of Eqs.
(19) and (20) is n = 30 while the two finite series of n = 30 and
35 agree reasonably well for the power series due to the resulting
average Nusselt numbers are the same for the cases for D = 0.5 and
Qr = 0.7 .

The dimensionless wall temperature distributions with D and
Gz as parameters for Qr = 0.3 and 0.7 are shown in Figs. 3 and 4,
respectively. As shown in Figs. 3 and 4, the wall temperature distri-
butions are linear on the bottom and upper walls and increase with
the fluid flowing direction. According to the definition of Qr in Eq.
(3), Qr < 0.5 refers that the heat flux is higher on bottom wall than
that on upper wall, while Qr > 0.5 is inverse and Qr = 0.5 is the sym-
metric heating case. Therefore, for Qr = 0.3, the temperature on bot-
tom wall is always lower than upper wall, as shown in Fig. 3.
However, for Qr = 0.7, in order to keep higher heat fluxes on bottom
walls, the bottom wall temperature may higher than upper wall
temperature, as shown in Fig. 4. Therefore, although the average
fluid temperature are the same at z/L = 1 in both subchannels,
the bottom and upper wall temperatures are different at z/L = 1
due to the different wall heat fluxes on the bottom and upper walls
for the cases of Qr = 0.3 and Qr = 0.7, and thus, the temperature
jump occurs at z/L = 1, as shown in Figs. 3 and 4. The heights of
subchannels a and b are adjusted by the impermeable-sheet loca-
tion D. As defined in Eq. (3), the height of subschannel a increases
with increasing D and the height of subschannel b consequently
decreases. The influences of impermeable-sheet location D on
the dimensionless wall temperature distributions are also illus-
trated in Figs. 3 and 4. Due to the average fluid velocity in subs-
channel a decreases with increasing the height of subschannel a
under constant flow rate V, both the residual time of fluid in subs-
channel a and the average fluid temperature increase with increas-
ing D. Therefore, in order to maintain the constant wall heat fluxes,
the bottom wall temperature increases with increasing D, as dem-
onstrated in Figs. 3 and 4. On the contrary, the upper wall temper-
ature decreases with increasing D. The larger Graetz number Gz
represents the higher volumetric flow rate or shorter conduit
length resulting in shorter fluid residence time and lower dimen-
sionless outlet temperature, as confirmed by Eq. (25). Hence, the
dimensionless wall temperature varies more flatly along the axial
direction for Gz = 100 than that for Gz = 10, as illustrated in Figs.
3 and 4. The dimensionless wall temperature comparison of dou-
ble-pass devices and single-pass devices is shown in Fig. 5. Two re-
sults are concluded by observing from Fig. 5 under the fixed
impermeable-sheet location D = 0.5 condition: (1) the down wall
temperature increases with Qr and contrarily, the upper wall tem-
perature decreases with Qr, as illustrated in Fig. 5; (2) comparing to
single-pass operation, the double-pass may performs lower wall
temperature especially for lower Qr. In double-pass devices, the
fluid in subchannel a is not only heated by the wall but also by
the fluid in the subchannel b through the impermeable sheet due
to the temperature difference between subchannels a and b. There-
fore, the average fluid temperature of subchannel a may be higher
than that in single-pass devices, especially at the region near con-
duit inlet and small Qr. Accordingly, the bottom wall temperature
of double-pass devices at low z/L is higher than that in single-pass
devices for the case of Qr = 0.3, as shown in Fig. 5. Fig. 6(a) and (b)
illustrate the bottom and upper wall temperatures at the initial
point (nGz = 0), midpoint (nGz = 0.5) and endpoint (nGz = 1), respec-
tively, with D and Qr as parameters for Gz = 100. The bottom wall
temperatures at initial point, midpoint and endpoint increase with
increasing D and Qr as shown in Fig. 6(a). However, for the upper
wall, the trends of the wall temperatures at initial point, midpoint
and endpoint to the D and Qr are inversely compared to the bottom
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wall as shown in Fig. 6(b). Fig. 7 shows the fluid bulk temperature
distribution along the fluid flowing direction. As indicated by Fig. 7,
the bulk fluid temperature increases linearly along the fluid flow-
ing direction, and the bulk fluid temperature distributions of sin-
gle-pass devices for Qr = 0.3, 0.5 and 0.7 are the same. The bulk
exit temperature of the single-pass device equals to the double-
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Fig. 8. Average Nusselt numbers vs. D with Qr and Gz as parameters.

Table 2
The average Nusselt numbers Nu0 and Nu and Ih with Qr as a parameter; D = 0.5.

Gz Nu0 Nu

Qr = 0.3 Qr = 0.5 Qr = 0.7 Qr = 0.3

1 4.12 4.12 4.12 0.79
10 4.12 4.12 4.12 5.81
100 4.12 4.12 4.12 5.46
1000 4.12 4.12 4.12 5.39
pass one under the same Gz as shown in Fig. 7 due to the constant
heat fluxes on the bottom and upper walls

6.2. Heat-transfer efficiency enhancement and Power consumption
increment

Nusselt number provides a measure of convection heat transfer
occurring at the wall surface and usually is used to describe the
heat-transfer efficiency in heat-transfer problems. The average
Nusselt numbers with Gz, D and Qr as parameters are illustrated
in Fig. 8. As referred to Eq. (41), the Nu is inversely proportional
to the average wall temperature ws, hence the larger Nu also im-
plies that the lower average wall temperature will be obtained.
As shown in Fig. 8, the Nu increases with increasing Gz. The influ-
ences of the impermeable-sheet location on Nu relate to Qr and can
be concluded three cases: (1) Qr = 0.3: the Nu increases with
increasing D; (2) Qr = 0.5: the Nu increases as D moves away from
0.5; (3) Qr = 0.7: the Nu increases with decreasing D. The compar-
ison of average Nusselt numbers Nu0 and Nu and the corresponding
heat-transfer efficiency enhancement Ih are shown in Table 2. The
average Nusselt number of single-pass devices Nu0 increases with
Gz but not varies with Qr, as indicated in Table 2. Moreover, the
heat-transfer efficiency enhancement Ih by employing a double-
pass operation is defined in Eq. (43). As presented in Table 2, the
double-pass devices perform better heat-transfer efficiency than
that in single-pass devices, while the devices are operated in high-
er Gz. However, while low Gz is employed, say Gz = 1 as shown in
Ih(%)

Qr = 0.5 Qr = 0.7 Qr = 0.3 Qr = 0.5 Qr = 0.7

0.65 0.56 �80.77 �84.15 �86.52
5.02 4.42 40.99 21.93 7.41
5.38 5.30 32.60 30.67 28.81
5.38 5.38 30.96 30.77 30.58

Table 3
The power consumption increment with impermeable-sheet location as a parameter.

IP

D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

1000.37 38.95 15 38.95 1000.37
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Table 2, the minus signs refer that the single-pass devices do better
device performance than that in double-pass devices. The double-
pass design increases the convective heat-transfer coefficient of
fluid by increasing the average fluid velocity, however, the incre-
ment of the convective heat-transfer coefficient is insignificant
for the case of lower Gz due to lower flowing rate. Hence, the per-
formance of the single-pass devices is better than that in double-
pass devices under lower Graetz number region, as shown in Table
2.

The double-pass operations not only enhance the heat transfer
but also increase the power consumption simultaneously. The
power consumption of a single-pass device is P0 = Vq‘wf,0 = 2.68 �
10�7 J/s based on following working dimensions: L = 1.2m, W =
0.04m, B = 0.2m, V = 1 � 10�5 m3/s, l = 8.94 � 10�4 kg/m s and
q = 997.08 kg/m3. As shown in Table 3, the power consumption
increment Ip by employing double-pass devices increases with D
moves away 0.5. Although the maximum power consumption of
double-pass devices is 1000 times higher than that of single-pass
devices for D = 0.1 and 0.9, the corresponding power consumption
is still small, say P = 2.68 � 10�4 J/s. Hence, it is reasonable to
ignore the power consumption in all operation conditions.

As an economic sense, the consideration of both the heat-trans-
fer efficiency enhancement Ih and the power consumption incre-
ment Ip is made in the form of Ih/Ip and the results are illustrated
in Fig. 9. For three cases of Qr = 0.3, 0.5 and 0.7, the highest values
of Ih/Ip are obtained as D = 0.5 due to the lowest power consump-
tion increment, as shown in Fig. 9. The influences of D = 0.3 and
D = 0.7 on Ih/Ip are different dependent on the values of Qr. For
Qr = 0.3, the case of bottom wall with lower heat fluxes than upper
wall, D = 0.7 performs better Ih/Ip than D = 0.3. For Qr = 0.5, the
symmetric heating case, the Ih/Ip of D = 0.7 equals to D = 0.3. Final-
ly, for Qr = 0.7, the case of bottom wall with higher heat fluxes than
upper wall, D = 0.3 has better Ih/Ip than D = 0.7. Fig. 9 also indicates
that the Ih/Ip increases with increasing Graetz numbers Gz for
Qr = 0.5 and 0.7 but decreases with increasing Graetz numbers Gz
for Qr = 0.3 .

7. Conclusions

The heat-transfer phenomenon of double-pass parallel-plate
heat exchangers with asymmetric wall heat fluxes and correspond-
ing mathematical model were investigated and developed theoret-
ically in this study. The analytical solutions for such conjugated
Graetz problem were obtained by using the linear superposition
of an asymptotic solution for the non-homogeneous part and an
eigenfunction expansion in terms of power series for the homoge-
neous part. The effects of Graetz number Gz, impermeable-sheet
location D and the wall heat flux ratio Qr on the wall temperature,
average fluid temperature distributions and the heat-transfer effi-
ciency enhancement in a double-pass heat exchanger were dis-
cussed. The results show that the heat-transfer efficiency
increases with increasing Gz. The influence of D on heat-transfer
efficiency depends on the wall heat flux ratio Qr and can be catego-
rized to three cases. The heat-transfer efficiency increases with
increasing D for the case of bottom wall with lower heat fluxes
than upper wall, say Qr < 0.5. For the case of bottom wall with high-
er heat fluxes than upper wall, say Qr > 0.5, the heat-transfer
efficiency increases with decreasing D. Furthermore, for the sym-
metric heating case, say Qr = 0.5, the heat-transfer efficiency in-
creases with D moves away from 0.5. The best selection of
impermeable-sheet location by considering both heat-transfer
efficiency enhancement and power consumption increment, say
Ih/Ip, is D = 0.5 as shown in Fig. 9. In conclusion, the double-pass
design can readily improve the heat-transfer efficiency of a heat
exchanger with asymmetric wall heat fluxes, comparing to the sin-
gle-pass devices, and the present results can provide the selection
guide of operating conditions to obtain the higher heat-transfer
rate. The theoretical predictions of the wall temperature
distribution of the double-pass devices are also helpful to choose
the adequate materials to build up a heat exchanger with asym-
metric heating.
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